
Precise Time-synchronization in the Data-Plane using
Programmable Switching ASICs

Pravein Govindan Kannan, Raj Joshi, Mun Choon Chan
School of Computing, National University of Singapore

ABSTRACT
Current implementations of time synchronization protocols
(e.g. PTP) in standard industry-grade switches handle the
protocol stack in the slow-path (control-plane).With new use
cases of in-network computing using programmable switch-
ing ASICs, global time-synchronization in the data-plane
is very much necessary for supporting distributed applica-
tions. In this paper, we explore the possibility of using pro-
grammable switching ASICs to design and implement a time
synchronization protocol, DPTP , with the core logic running
in the data-plane. We perform comprehensive measurement
studies on the variable delay characteristics in the switches
and NICs under different traffic conditions. Based on the mea-
surement insights, we design and implement DPTP on the
Barefoot Tofino switch using the P4 programming language.
Our evaluation on a multi-switch testbed shows that DPTP
can achieve median and 99th percentile synchronization er-
ror of 19 ns and 47 ns between 2 switches, 4-hops apart, in
the presence of clock drifts and under heavy network load.

CCS CONCEPTS
• Networks→ Programmable networks.

KEYWORDS
Network Measurement, Programmable Switches, P4

1 INTRODUCTION
Precise network clock synchronization plays a vital role
in solutions that tackle various consistency problems re-
lated to maintaining distributed databases, applications in
the context of e-commerce, trading, and data-mining that
run in datacenter settings. Existing standards like NTP [1]
achieve only millisecond-level accuracy and require a large
number of message exchange. Synchronization mechanisms
based on the IEEE 1588 Precise Time Protocol (PTP) [2] can

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SOSR ’19, April 3–4, 2019, San Jose, CA, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6710-3/19/04. . . $15.00
https://doi.org/10.1145/3314148.3314353

achieve nanosecond level accuracy under idle network con-
ditions, but achieve only sub-microsecond level accuracy
under network congestion [3]. Additionally, PTP’s behavior
is very tightly coupled to proprietary implementations [4],
and hence it is unable to achieve the theoretical performance.

The link speeds inmodern datacenters aremoving towards
100Gbps. At 100Gbps, an 80-byte packet can be received
every 6.4 ns. Hence, it is imperative that clock synchroniza-
tion achieves nanosecond-level precision. Recent works like
DTP [3] and HUYGENS [5] have shown that it is possible
to provide nanosecond-level precision in datacenters. DTP
implements their synchronization logic in the Ethernet PHY.
Even though it incurs minimal traffic overhead and is highly
precise, DTP needs to be supported by the PHYs across the
entire network. On the other hand, HUYGENS implements
time synchronization protocol between end-hosts by sending
coded probes across the network and using SVM to perform
clock estimation. However, HUYGENS synchronizes only the
hosts, and while efficient, still incurs a non-trivial amount
of bandwidth and processing overhead.

With the arrival of programmable switching ASICs, many
distributed algorithms and applications [6–14] are readily
implementable in the data-plane of the switch. These algo-
rithms leverage the line-rate processing speed and stateful
memory available in the switches. Our work draws its inspi-
ration from these data-plane approaches. With the ability to
perform high resolution timestamping and stateful computa-
tion on a per-packet basis, we try to answer the question: how
far can we go and what does it take to achieve nanosecond-
level time synchronization using the data-plane programma-
bility framework? Clearly, implementing network-wide time
synchronization in the data-plane is a much more natural
way to support existing and future data-plane based dis-
tributed algorithms and applications like consistency, caching,
load balancing, network updates, and tasks scheduling.
Our contributions are as following:
(1) We perform a comprehensive measurement study on the

variable delay characteristics of different stages in the
switch pipeline, NICs as well as cables under different
network conditions.

(2) Taking insights from the measurement study, we design
and implement a preciseData-PlaneTime-synchronization
Protocol (DPTP) which leverages the flexible packet pro-
cessing, transactional statefulmemory and high-resolution

https://doi.org/10.1145/3314148.3314353

SOSR ’19, April 3–4, 2019, San Jose, CA, USA Pravein Govindan Kannan, Raj Joshi, Mun Choon Chan

clocks available in programmable switching ASICs. DPTP
stores the time in the data-plane and responds to DPTP
queries entirely in the data-plane.

(3) We have implemented and evaluated DPTP on a multi-
hop testbed with Barefoot Tofino switches [15].
Our evaluation shows that, in the absence of clock drifts,

DPTP can achieve median synchronization error of 2 ns and
99th percentile error of 6 ns for two directly connected switches.
In the presence of clock drifts across the network switches,
DPTP can achieve median synchronization error of 19 ns
and 99th percentile error of 47 ns for switches 4-hops apart.
DPTP achieves 99th percentile error of 50 ns between two
host NICs 6-hops apart even under heavy network load.

2 RELATEDWORK AND MOTIVATION
NTP [1] is a widely used time synchronization protocol. It
uses software-based timestamping before sending the re-
quests and after receiving the response and then calculates
the one-way delay by halving the RTT. It achieves syn-
chronization accuracy in the range of few milliseconds [16].
While NTP is easy to deploy, its accuracy is relatively low.
The IEEE 1588 Precise Time Protocol (PTP) [2] utilizes hard-
ware timestamping available in switching ASICs or end-host
NICs and provides a precision of up to 10’s of nanoseconds
for networked devices in a datacenter. PTP is an open stan-
dard, but it is haunted by implementation-specific artifacts.
Most of the proprietary implementations of PTP implement
the PTP stack in the host software [17] or in the switch
control-plane [18]. This has three main disadvantages. First,
the client requires several synchronization rounds and statis-
tical filtering to offset clock drifts suffered during software
processing delays. This results in clients requiring up to 10
minutes to achieve an offset below 1 µs [3]. Second, the pre-
cision of such implementations has been reported to degrade
up to 100’s of µs under heavy network load [3, 4]. Finally, a
software implementation cannot scale to a large number of
clients without adding delays and affecting precision. While
there are dedicated PTP hardware appliances [19], they are
expensive and not amenable to datacenter-wide deployment.
GPS [20] can be used to achieve nanosecond precision [21]
by connecting each device to a GPS receiver. However, de-
ployment is cumbersome and not easily scalable since each
device is directly synchronized to the GPS satellites.

Datacenter Time Protocol (DTP) [3] leverages the synchro-
nization mechanism in the Ethernet PHY layer to achieve
time synchronization. Since it uses the PHY clock, its accu-
racy depends on the PHY characteristics. For 10Gbps link
speed, the PHY frequency is 156.25MHz, and thus a single
clock cycle is 6.4 ns. The synchronization precision achiev-
able for 10G NIC is bounded by 25.6 ns (4 clock cycles) for
a single hop. In addition, DTP requires special hardware at
every PHY in the datacenter. HUYGENS [5] performs clock

synchronization between the end-hosts using coded probes.
It selects the right set of data samples and leverages network
effect with measurements among many node pairs to achieve
precise synchronization. However, it does not handle syn-
chronization between network devices (in the data-plane)
and incurs a non-negligible amount of bandwidth and pro-
cessing overhead.

Programmable switching is an emerging trend with
switching ASICs from vendors such as Cavium [22], Bare-
foot [23] and Intel [24] being available in the market and
more coming up [25–27]. Programmable switches provide
flexible packet parsing and header manipulation through
reconfigurable match-action pipelines. They also provide
transactional stateful memory that allows stateful processing
across packets at line-rates. Most importantly, they provide
access to high-resolution clocks (∼1 ns) in the data-plane us-
ing 42-48 bit counters [28] which could maintain timestamps
over several hours before wrap around. This combination of
data-plane programmability and high-resolution clocks have
made it possible to add high-resolution timing information
to the packets at line-rates enabling some novel applications
such as the In-band Network Telemetry (INT) [29].

In this work, we leverage flexible packet processing, trans-
actional stateful memory, and high-resolution clocks pro-
vided by programmable switches to design and implement a
precise Data-Plane Time-synchronization Protocol (DPTP).

3 MEASUREMENTS
Designing a time synchronization protocol requires under-
standing the various delay components involved in the com-
munication between a reference clock and a requesting client.
In particular, it is important to understand which delay com-
ponents could be accounted for using the timestamping capa-
bilities in the overall system and which delay components re-
main unaccounted for. Achieving nanosecond-scale synchro-
nization requires accounting for nanosecond-level variability
in the various delay components. Further, for maintaining
the nanosecond-level synchronization, it is necessary to keep
the total synchronization delay low so that more requests
could be processed per-second (for tighter synchronization)
and a large number of clients could be supported.
In this section, we consider a request-response model

where a client sends a request to synchronize with a server
who maintains the reference clock. We perform measure-
ments to understand the various delay components involved
in a request-response packet timeline under different traf-
fic scenarios. The request-response timeline starts when a
request packet1 is generated by a client network switch (or
host) and ends when the corresponding response packet1 is

160 bytes in size comprising of the Ethernet header and a custom DPTP
header for storing individual component delays.

DPTP SOSR ’19, April 3–4, 2019, San Jose, CA, USA

SW1 SW2

100G Breakout Cable

Programmable
Switch

Host1
(NIC: Intel X710)

100G Loopback Cable

Host2
(NIC: Intel XXV710)

Figure 1: Measurement setup with a Programmable
switch, two servers and a loopback cable

MAC &
Parser

TRx(TReqRx/TRespRx)

Ingress
Pipeline

Buffer &
Queuing
Engine

Egress
Pipeline

Deparser
&

MAC

TIg (TReqIg/TRespIg) TEg (TReqEg/TRespEg)
TTx (TReqTx/TRespTx)

Packet In Packet Out

MacD RespQ/ReqQ RespTx/ReqTx

Figure 2: Portable Switch Architecture [28]

received from the server (another switch or host). Specifi-
cally, we measure the delays involved in NIC Tx/Rx, switch’s
data-plane pipeline processing, and wire propagation. We
break down the overall delay into smaller components that
can be measured using the precise timestamps provided by
the switch data-plane.

Testbed Setup. Our measurement testbed (shown in Fig-
ure 1) consists of a Barefoot Tofino switch connected to two
Dell servers with Intel XXV710 (25G/10G) and Intel X710
(10G) NIC cards using a 100G breakout cable configured as 4
x 10G. Two switches SW1 and SW2 are emulated on a single
physical switch and connected by a 100G QSFP loopback
cable (similar to [30]), which can be configured as 4 x 10G or
4 x 25G or 1 x 40G or 1 x 100G for different experiment sce-
narios. All cables are direct attached copper (DAC) and 1m
in length. To account for the delays involved in switch data-
plane pipeline processing, we use the various high-resolution
timestamps available in Portable Switch Architecture [28]
(Figure 2): (i) TRx : timestamp when the entire packet is re-
ceived by the Rx MAC, (ii) TIд : timestamp when the packet
enters the ingress pipeline, (iii) TEд : timestamp when the
packet enters the egress pipeline, and finally (iv) TTx : times-
tamp when the packet is transmitted by the Tx MAC. The
switch is programmed with a custom P4 program to parse
the Ethernet and a custom DPTP header. Based on the Ether-
net type, our P4 program parses the DPTP header and adds
timestamps at different stages. Packet forwarding is done
based on the destination MAC address. We note that the la-
tency numbers reported in the rest of this section correspond
to our custom P4 program2.
3.1 Switch-to-Switch Synchronization
Figure 3 shows the request-response timeline when a switch
SW1 sends a synchronization request to switch SW2. We

2the actual switch latency can vary based on the P4 program being used.

SW1 SW2

ReqWD

Initiate
Request

TReqEg

TReqIg

TReqTx
TReqRx
TRespIg

RespWD TRespRx
TRespIg

Response
Received

ReqQ

ReqTx

RespMacD

RespQ

RespTx

MacD

Figure 3: Packet Timeline and delay measurement

list the different timestamps and intervals (in bold) of the
request-response timeline below (in chronological order):
(1) TReqIд : Timestamp (Request packet arrival at ingress

pipeline of SW1).
ReqQ: Duration (Ingress pipeline processing and packet
queuing at buffer engine).

(2) TReqEд : Timestamp (Request packet arrival at egress
pipeline of SW1).
ReqTx: Duration (Egress pipeline processing and depars-
ing).

(3) TReqTx : Timestamp (Request packet serialization and Tx
from SW1).
ReqWD: Duration (Wire-delay across DAC cable).

(4) TReqRx : Timestamp (Request packet arrival at SW2).
RespMacD: Duration (Input buffering and parsing).

(5) TRespIд : Timestamp (Request packet arrival at ingress
pipeline and response generation).
RespQ: Duration (Ingress pipeline processing and packet
queuing in the buffers).

(6) TRespEд : Timestamp (Response packet arrival at egress
pipeline of SW2).
RespTx: Duration (Egress pipeline processing and de-
parsing).

(7) TRespT x : Timestamp (Request packet serialization and Tx
from SW2).
RespWD: Duration (Wire-delay across DAC cable).

(8) TRespRX : Timestamp (Response packet arrival at SW1).
MacD: Duration (Input buffering and parsing).

(9) TRespIд : Timestamp (Response packet arrival at ingress
pipeline of SW1).
From this list, only the wire delays i.e. ReqWD and Re-

spWD cannot be directly measured using the switch data-
plane timestamps. However, since there is a single physical
clock shared by SW1 and SW2, we can directly compare the
timestamps of the request and response packets to precisely
construct the request-response timeline shown in Figure 3.

We perform each measurement using 10,000 request pack-
ets. Timestamps are added to the packet’s header at different
points in the switch-pipeline by the P4 program and the de-
lays of various components are calculated when response

SOSR ’19, April 3–4, 2019, San Jose, CA, USA Pravein Govindan Kannan, Raj Joshi, Mun Choon Chan

Table 1: Delay profiling of components in Switch-to-Switch measurements over 10G links [min - max (avg)]
Component Idle Links Line-rate recv traffic(1500b) Oversubscribed recv traffic(64/1500b)

Request processing and Queuing (ReqQ) 306 - 313 ns (307) 306 - 313 ns (306.7) 306 - 313 ns (307)
Request Egress Tx Delay (ReqTx) 304 - 356 ns (340.8) 300 - 361 ns (341.1) 296 - 361 ns (341)

[Wire Delay (1M) (ReqWD)] 67 - 79 ns (72.6) 66 - 79 ns (72.7) 66 - 79 ns (72.4)
MAC & Parser Delay at Server (RespMacD) 0 - 57 ns (26.1) 0 - 57 ns (26) 0 - 59 ns (27)
Reply processing and Queuing (RespQ) 313 - 323 ns (317) 313 - 481 ns (317.3) 1.552- 1.556 ms (1.554)

Reply Egress Tx Delay (RespTx) 296 - 365 ns (341) 298 - 803 ns (555) 1747 - 1914 ns (1783)
[Wire Delay (1M) (RespWD)] 64 - 77 ns (70) 64 - 76 ns (70) 63 - 76 ns (70)

MAC & Parser Delay at Client (MacD) 0 - 55 ns (27) 0 - 58 ns (27) 0 - 90 ns (27))
Total RTT 1462 - 1637 ns (1473) 1460 - 1976 ns (1667) 1.555 - 1.559 ms (1.556)

arrives. We summarize the individual delays in Table 1 under
three network conditions: (1) Idle links: No other traffic
is being sent on the links except for the request-response
packet. (2) Line-rate recv traffic: Cross-traffic (64/1500 byte
UDP packets) at line-rate along the direction of the response
packet. (3)Oversubscribed recv traffic: Heavy incast cross-
traffic (64/1500 byte UDP packets) that induces queuing along
the direction of the response packet.

Measurement results under different load conditions.
In the scenario with idle links, major delays occur in the
queuing and pipeline processing components (ReqQ, ReqTx,
RespQ and RespTx) which add up to 84% of the total delay.
Somewhat surprisingly, wire delay over the 1m DAC ca-
ble (ReqWD and RespWD) takes around 70 ns, much more
than the MAC Delay (RespMacD or MacD). Interestingly, the
MAC Delay fluctuates from 0 - 55 ns since the parser takes a
variable amount of time to parse the packet and feed it into
the ingress pipeline [31]. RespTx also experiences similar
amount of fluctuation. RespTx includes egress pipeline pro-
cessing, deparsing, Tx MAC delay and serialization. Since
egress processing has a fixed delay [31], this variation is
contributed by the other three components of RespTx. In the
line-rate traffic scenario, the RespTx is higher because the
line-rate cross-traffic with 1500 byte packets fully saturates
the link. The serialization delay for these packets is higher
than the egress pipeline processing delay. As a result, the ex-
tra synchronization packets get queued for serialization in a
small buffer after the egress processing. This queuing causes
the Egress Tx Delay (RespTx) to increase. Line-rate cross-
traffic with 64-byte packets does not observe this behaviour
due to faster serialization. All other delay components are
similar to the idle link scenario because they result from data-
plane (hardware) processing which has similar performance
under all conditions.
Under oversubscribed conditions, delay increases in two

components – RespQ and RespTx. RespQ increases to 1.55ms
because the queue buffer is always full due to the over-
subscribed cross-traffic (1.55ms is the maximum per queue
buffer in our setup). RespTx in this scenario is even higher
than the line-rate traffic scenario. This is because with the

 0
 50

 100
 150
 200
 250
 300
 350
 400

10G 25G 40G 100G

To
ta

l T
im

e
(n

s)

ReqQ
ReqTx

ReqWD

RespMacD
RespQ

RespTx

RespWD
MacD

Figure 4: Delays for various link-speeds (idle links)

 0
 2
 4
 6
 8

 10
 12
 14

10G 25G 40G 100GW
ire

 D
el

ay
 a

sy
m

m
et

ry
 (n

s)
3.93

2.97 2.95 2.65

Figure 5: Asymmetry of wire delay between request
and response for different link speeds

oversubscribed traffic, the aforementioned small pre - seri-
alization buffer remains mostly filled with the cross-traffic
packets which causes additional delay to the synchronization
packets. Due to this, the range of RespTx values falls to a
small window of 167 ns. Note that ReqQ and ReqTx remain
unaffected in our scenarios due to cross-traffic only along
the response direction. However, under the presence of cross-
traffic in the request direction, ReqQ and ReqTx exhibit the
same behaviour as RespQ and RespTx.

Effect of different link speeds. We re-configured the
link speed of the loopback cable between SW1 and SW2
(Figure 1) to 25G, 40G, and 100G and plot the eight delay
components as bars for 10G/25G/40G/100G in Figure 4 for
the idle traffic condition. We observe that the components
involving MACDelay (ReqTx, RespMacD, RespTx and MacD)
reduce significantly with higher link speeds. We also observe
decrease in wire delay of upto ∼20 ns with 100G compared
to 10G. Most importantly, the variation of delays (errorbars)
reduce significantly with higher linkspeeds. The average
RTTs observed for 25G, 40G and 100G are 1356 ns, 1264 ns
and 1044 ns respectively.

DPTP SOSR ’19, April 3–4, 2019, San Jose, CA, USA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

C
D

F

Unaccounted Delay in Dataplane(ns)

Idle Links
Line-rate(64 B)

Line-rate(1500 B)
Oversubscribed

Figure 6: Unaccounted Delay (in ns) when using
packet departure timestamp in data-plane

Accounting for the delay components. Normally, it
would be reasonable to assume the wire delays to be sym-
metric between two directly connected switches. However, at
a nano-second scale we found that the wire delays are asym-
metric. We plot the wire delay asymmetry (abs(ReqWD −
RespWD)) for different link speeds in Figure 5. For 10G link
speed, we observe the asymmetry variation to be ranging
from 0-13 ns with an average of 3.93 ns. Asymmetric Wire
delays could be due to the low-frequency clocks at PHY [3].
This variation drops to 0-7 ns with an average of 2.65 ns at
100G. Thus, at higher link speeds, clock synchronization
would be more accurate, since the unaccounted wire delay
would have less asymmetry.

Measuring ReqTx and RespTx. To accurately measure
and account for ReqTx/RespTx, we need to know the exact
time when the request/response packet left the respective
switch i.e. TReqTx /TRespT x . The timestamp of the exact in-
stant when the packet serialization starts cannot be embed-
ded into the packet itself. This is a fundamental limitation and
thus this timestamp needs to be communicated separately
via a follow-up packet. To avoid such separate follow-up
packet, several commercial switches support embedding a
departure timestamp into the departing packet. The depar-
ture timestamp is added when the packet is received by the
egress MAC and thus differs from the exact transmit time.
The use of this departure timestamp to avoid the follow-up
packet thus leads to unaccounted delay during synchroniza-
tion. Wemeasured this unaccounted delay in our setup under
different cross-traffic conditions and the results are shown in
Figure 6. At the 99th percentile, oversubscribed traffic leads
to unaccounted delay of about 289 ns while it remains about
175 ns for idle links.

Reducing the delays. Even if most of the delay compo-
nents could be accounted for in a synchronization request-
response, it is still required to keep the total delay low. A
lower total delay allows for more requests to be processed
per unit time for tighter synchronization in face of clock
drifts. It also enables scaling to a large number of clients. Ta-
ble 1 shows RespTx and RespQ to be the major contributors
of the total delay. We observed that using prioritized queues
for synchronization packets doesn’t reduce RespTx under
line rate or oversubscribed conditions. This is because the
small pre-serialization buffer (the cause for higher RespTx)

still remains mostly filled with cross-traffic packets. Using
prioritized queues does however reduce RespQ significantly
(as expected) under oversubscribed conditions. We measured
RespQ to be about 2000 ns for 1500-byte packets and 650 ns
for 64-byte packets with oversubscribed cross-traffic. RespQ
does not come down to the same value as with idle/line-rate
traffic conditions because the small pre-serialization buffer
once full back-pressures the port-level scheduler and the
egress processing.

Effect of FEC.When FEC (forward error correction) is en-
abled, we observed that the wire delay (ReqWD and RespWD)
component increases to 344 - 356 ns with idle links. The over-
all RTT is about 2030 ns. At line-rate traffic we observe an
increase in the delay for RespQ (314-4452 ns) and RespTx
(298 - 1914 ns) in addition to the wire delay components. This
behaviour can be attributed to the additional back-pressure
created by the serialization overhead of FEC. The overall
RTT for line-rate traffic varies from 2026 - 7589 ns. However,
it is important to note that the wire-delay asymmetry still
remains the same i.e. bounded by 12 ns.
Take-aways:
(1) Hardware supported timestamps and the ability to em-

bed them in packets make programmable data-planes
immensely useful to account for the various delay com-
ponents.

(2) Even when the link is idle, we observe a 175 ns (1462 -
1637 ns) delay variation in the processing time.

(3) Even though there is much variability in the various de-
lay components, since accounting is available for most of
them, the variability does not affect clock synchroniza-
tion. The only unaccounted delay is the wire-delay.

(4) At a nanosecond-scale, the wire-delay exhibits asym-
metry (between request and response). The asymmetry
reduces with higher link-speeds thus enabling better pre-
cision at higher link-speeds. This asymmetry forms the
lower bound on the achievable synchronization accuracy.

(5) To accurately account for a packet’s exit timestamp, a
follow-up packet is required. The follow-up packet could
be avoided if the packet departure timestamp could pre-
cisely capture packet’s exit time and could be embedded
in the data-plane. This has important implications for
the design of a time synchronization protocol.

3.2 Switch-to-Host Synchronization
Similar to the earlier switch-to-switch measurement, we pro-
file a request-response packet timeline, where the request
packet originates from a host (rack server) and a switch re-
sponds to the request. We use MoonGen, a packet generation
tool based on DPDK (ver 17.8) to generate request packets.
The NIC is configured to capture the hardware timestamp
when the packet is sent out and received. We perform the
measurement on two NICS: (i) Intel X710 (SFP+), and (ii)

SOSR ’19, April 3–4, 2019, San Jose, CA, USA Pravein Govindan Kannan, Raj Joshi, Mun Choon Chan

Table 2: Delay profiling of components in Switch-to-Host measurements over 10G links (SFP+)
Component Idle Links Line-rate recv traffic(64b) Line-rate send traffic(64b)

Reply MAC & Parser Delay (RespMacD) 0 - 56 ns (26.1) 0 - 58 ns (26.9) 0 - 57 ns (28.1)
Reply processing and Queuing (RespQ) 299 - 306 ns (300.6) 299 - 319 ns (303.8) 299 - 306 ns (300.3)

Reply Egress Tx Delay (RespTx) 297 - 360 ns (328) 303 - 411 ns (356.8) 297 - 360 ns (326)
[Un-accounted (NicWireDelay)] 402 - 429 ns (417.5) 405 - 430 (419) ns 625 - 699 (652) ns

Total RTT 1059 - 1084 ns (1072.4) 1069 - 1149 ns (1107.1) 1280 - 1354 ns (1307.3)

Table 3: Delay profiling of components in Switch-to-Host measurements over 10G links (SFP28)
Component Idle Links Line-rate recv traffic(64b) Line-rate send traffic(64b)

Reply MAC & Parser Delay (RespMacD) 0 - 56 ns (27.1) 0 - 60 ns (28.4) 0 - 59 ns (27.8)
Reply processing and Queuing (RespQ) 297 - 304 ns (297) 297 - 316 ns (298.4) 297 - 303 ns (297)

Reply Egress Tx Delay (RespTx) 283 - 356 ns (328) 299 - 356 ns (358) 299 - 364 ns (331)
[Un-accounted (NicWireDelay)] 720 - 736 (727) ns 716 - 735 (725.7) ns 941 - 1005 (962.3) ns

Total RTT 1373 - 1389 ns (1381) 1379 - 1453 ns (1411) 1593- 1661 ns (1661)

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 300 400 500 600 700

C
D

F

NicWireDelay(ns)

0%
10%
25%
50%
75%
90%

100%

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 300 400 500 600 700

C
D

F

NicWireDelay(ns)

0%
10%
25%
50%
75%
90%

100%

a. Intel X710 NIC (SFP+) for
64-byte packets

b. Intel X710 NIC (SFP+) for
1500-byte packets

 0

 0.2

 0.4

 0.6

 0.8

 1

 500 600 700 800 900 1000

C
D

F

NicWireDelay(ns)

0%
10%
25%
50%
75%
90%

100%

 0

 0.2

 0.4

 0.6

 0.8

 1

 500 600 700 800 900 1000

C
D

F

NicWireDelay(ns)

0%
10%
25%
50%
75%
90%

100%

c. Intel XXV710 NIC (SFP28)
for 64-byte packets

d. Intel XXV710 NIC (SFP28)
for 1500-byte packets

Figure 7: CDF of NicWireDelay for idle and cross-
traffic conditions with 64-byte and 1500-byte packets
Intel XXV710 (SFP28/SFP+). We configure both NICs to op-
erate at 10G. For each NIC, we perform the measurements
under three scenarios: 1) Idle host-switch link, 2) Line-rate
receive traffic (64/1500-byte packets) from switch to host, and
3) Line-rate send traffic (64/1500-byte packets) from host to
switch. For each scenario, we record the following delay com-
ponents: 1) MAC and parser delay at the Switch (RespMacD),
2) Reply processing and queuing (RespQ) and 3) Reply egress
Tx delay (RespTx). By subtracting the accounted components
from the overall RTT using the timestamp captured at NIC
hardware, we obtain the total unaccounted delay. Table 2
and Table 3 summarize these measurements for Intel X710
and Intel XXV710, respectively. Due to space constraints,
we report only 64-byte packet measurements in the tables.
For 1500-byte packets, we observe the measurements to be
same for all components except NicW ireDelay, which will
be discussed later in this section.
The overall RTT on NIC X710 is similar to the switch-

to-switch measurements without the ReqQ component. The

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

In
cr

ea
se

 in
 N

ic
W

ire
D

el
ay

 (n
s)

% Traffic Bandwidth

SFP+
SFP28

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

In
cr

ea
se

 in
 N

ic
W

ire
D

el
ay

 (n
s)

% Traffic Bandwidth

SFP+
SFP28

a. 64-byte packets b. 1500-byte packets
Figure 8: Increase in NicWireDelay w/ cross-traffic

RTT onNICXXV710 is higher thanX710 by about∼300 ns.We
suspect that this could be because of running the SFP28 NIC
in the SFP+ compatibility mode3. The unaccounted delay con-
sists of the two-way wire delay and the MAC/serialization
delay incurred at the NIC/transceiver. To validate this, we
perform an additional experiment in which we make a loop-
back connection between two ports of the NIC from the same
host. We measure the timestamps captured when sending
and receiving the packet, and observe that the total delay
incurred is roughly ∼348 ns for Intel X710 and ∼660 ns for
Intel XXV710. This value is close to the unaccounted delay
minus one-way wire delay (roughly ∼70 ns). We refer to this
unaccounted delay as NicW ireDelay in future references.
The Case of NicWireDelay. One interesting observation

is that when we send cross-traffic of 64-byte packets at line-
rate from the same interface as the request packets, we ob-
serve an increase in the NicW ireDelay by about ≈250 ns in
both the NICs. We can infer that this is a one-way delay in-
crease since we do not observe an increase in NicW ireDelay
when we receive line-rate cross traffic in the same interface.
In order to understand this delay, we further vary the amount
of traffic (using 64-byte packets) being sent out of the host
interface from 0% to 100%. Figure 7(a) and 7(c) respectively
show the CDF of the NicW ireDelay under different volumes
of sent traffic for the two NICs. We observe that the over-
all NicW ireDelay fluctuates even under 10% traffic, and the
fluctuation (tail) increases with an increase in traffic. The
overall range of variation is about 300 ns. Further, Figure
3We couldn’t measure XXV710 in 25G mode due to NIC timestamp issues.

DPTP SOSR ’19, April 3–4, 2019, San Jose, CA, USA

8(a) shows the average increase in the NicW ireDelay wrt
0% traffic for different traffic volumes. The NicW ireDelay
increases almost linearly with an increase in the sent traffic.
We repeat the same experiment with bigger packets of size
1500-bytes for the sent traffic. As earlier, we plot the CDF of
NicW ireDelay for the two NICs with 1500-byte packets in
Figures 7(b) and 7(d). We observe that the variation is less
(∼150 ns) compared to the sent traffic with 64-byte packets.
This is likely because, with 64-byte packets, there is repeated
MAC/serialization delaywhich adds to the variability. Similar
to Figure 8(a), Figure 8(b) shows the average increase in the
NicW ireDelay with 1500-byte packets in the sent traffic. We
observe a sluggish increase in the NicW ireDelay of about
40 ns till 75% traffic, and then it increases by about 135 ns at
line-rate. This could be due to reduced I/O operations with
1500-byte packets as compared to 64-byte packets.
Take-aways:
(1) In spite of NIC hardware timestamping, there is an unac-

counted and variable NicW ireDelay.
(2) TheNicW ireDelay varies up to 27 ns in Intel X710 (SFP+)

and 16 ns in Intel XXV710 (SFP28) under idle conditions.
(3) In the presence of cross-traffic from the host,NicW ireDelay

increases for both the NICs in a similar fashion.
(4) Time synchronization error can increase in the presence

of upstream cross traffic due to asymmetry ofNicW ireDelay.
Hence, it is ideal for the host to have knowledge of the
cross-traffic volume to minimize the error.

4 DESIGN
DPTP is designed to be a network-level service with net-
working devices (switches) providing accurate time to hosts.
To start, one of the switches in the network is designated
the master switch. Next, the switches in the network, com-
municate with the master switch (directly or indirectly) to
get the global time. This step happens periodically since the
clocks are known to drift up to 30µs per second [5]. Once the
switches in the network are continuously synchronized, they
can respond to the time-synchronization queries from the
end-hosts. HenceDPTP requests from hosts can be completed
in a sub-RTT timeframe4 and in just one hop.

4.1 DPTP in Operation
DAG Construction. The network operator designates a
switch as the master. Once the master switch is identified, a
network-level DAG is constructed leading to master switch
in the same way as done by [32]. By leveraging [32], link-
failures and fast re-routing can be taken care of at the data-
plane. Upon construction of DAG, each switch will query
their parent switch for time-synchronization. Eventually, the
TOR switches can also maintain accurate global timing in
the data-plane and respond to DPTP queries of hosts.
4sub-RTT wrt requests being responded by a master switch/host

SW1 SW2

1) Initiate
DPTP

Request

TReqTx

TReqRx

TRespEg

TRespTx

TRespRx

RespD

2) DPTP Time
Calculation (TNowsw2)

Text
{TNowsw2, TReqRx,TRespEg}

DPTP Request

{TRespTx}
DPTP Follow up

DPTP Response

3)DPTP
Reference
Adjustment
(TRefsw1)

TRespIg

Figure 9: DPTP Request-Response timeline.

Clock Maintenance. The master switch SW stores the
reference clock timestamp from an external global clock
source5 to the data-plane ASIC as TRefSW and stores the
current data-plane timestamp (TRespIд) to a register Tof f set .
Note that TRefSW and Tof f set are registers available in the
data-plane. We do not disturb (or reset) the existing data-
plane clock due to multiple reasons: 1) rewriting the internal
data-plane clock is an expensive operation since it involves
consistency checks, and 2) other applications like INT [29]
may be using the data-plane clock in parallel. Hence, it is
necessary to leave the value unchanged to be non-intrusive
to other applications.

EraMaintenance. The switch data-plane’s internal clock
counter used to obtainTRespIд orTRespEд (Figure 3) is usually
limited to x bits. For example, a 48-bit counter can account
for only up to 78 hours before rolling over. In order to scale
above the counter limit, the switch’s control-plane program
probes the data-plane counter periodically to detect the wrap
around. Upon detection, it increments a 64-bit era register
Tera by 2x − 1.

Switch Time-keeping. On receiving an incoming re-
quest, the master switch SW reads the initially stored ex-
ternal reference timeTRefSW , the eraTera and the correction
offset Tof f set in ingress pipeline. At the egress pipeline, it
reads the current egress timestamp TRespEд and calculates
the current time TNowSW by adding to the reference time,
the time that has elapsed since initially storing the reference
time at Tof f set :

TNowSW = TRefSW + (Tera +TRespEд −Tof f set) (1)

Note that, TNow is calculated at the egress pipeline using
TRespEд to avoid queuing delays following the TNow calcula-
tion. Every time the switch SW receives DPTP queries from
its child switch/host, it calculates TNowSW using the current
TRespEд . The above steps of Clock Maintenance, Era Main-
tenance, and Switch Time-keeping are executed by every
switch in the network.
5The details of the interface and maintaining sync between the external
global clock and the master switch are beyond the scope of this work.

SOSR ’19, April 3–4, 2019, San Jose, CA, USA Pravein Govindan Kannan, Raj Joshi, Mun Choon Chan

4.2 Switch-to-Switch DPTP
Figure 9 shows the request-response timeline between switch
SW1 and the master switch SW2, which has the correct
TRefSW 2 . SW1 initiates DPTP Request and sends the packet
out at TReqTx . The Request message is received by SW2 at
TReqRx . SW2 calculates the referenceTNowSW 2 as in Equation
1 in the egress pipeline.TNowSW 2 ,TReqRx andTRespEд are em-
bedded in the packet by the data-plane. The packet is then for-
warded back to SW1 after swapping source and destination
MAC addresses. The response message is received by SW1
at TRespRx and it starts processing the message at TRespIд . It
now stores TRespIд as Tof f set . To calculate the correct refer-
ence timeTRefSW 1 , SW1 also needs to knowTRespT x which is
the time just before the serialization of the response packet.
For the reasons mentioned in §3.1, SW2 can accurately cap-
ture TRespT x only after sending the response message. SW2
thus sends a Follow-up message containing TRespT x . Once
SW1 knowsTRespT x , it sets the correct reference timeTRefSW 1
as following:

TRefSW 1 = TNowSW 2 + RespD (2)

where the response delay RespD is defined as,

RespD =
(TRespRx −TReqTx) − (TRespT x −TReqRx)

2
+(TRespT x −TRespEд) + (TRespIд −TRespRx)

(3)

In Equation 3, the first term calculates the approximate one-
way wire-delay by removing the switch delays from the RTT.
The second term is the time between TRespT x and TRespEд ,
since TNowSW 2 is based on TRespEд . The third term adds up
the delay at SW1 before the response message is processed.
When there is a follow-up packet for obtainingTRespT x , SW1
would initially record the TRespIд (as Tof f set) and TRespRx
when it receives the DPTP response, and then use them for
calculation once the follow-up packet arrives with TRespT x .
Hence, SW1 does not need to account for the delay due
to follow-up packet. Once the reference time TRefSW 1 and
the corresponding Tof f set is stored in SW1, TNow can be
calculated on-demand as per Equation 1 for use by other
data-plane applications or DPTP clients.

4.3 Switch-to-Host DPTP
Switch-to-Host DPTP is mostly similar to Switch-to-Switch
DPTP . However, due to variable delay involved when there
is outgoing cross-traffic from the host, we design Switch-to-
Host DPTP to operate in two phases. Phase 1 happens only
once during the initialization of the host and phase 2 is the
operational phase.

Phase 1: Profiling. During this phase, the host sends
DPTP probe packets to the switch, which are in the same
format as DPTP query packets. The switch replies back the
current time along with the switch delays (TNowSW , TReqRx ,

Reference
Registers

lookup

Reference
Calculation

Send Response
Packet Out(Tx)

Send Tx Follow-up

Software

Hardware

Create a Follow-up
Packet

Inform
Control
Plane

Era
Maintenance

Learning
Filter

Handle
Digest

Attach R
at Egress

Is DPTP
Request?

Calculate
R using

LPF

Packet In Yes

No

Control Plane CPU

Follow-upRead
Tx

Figure 10: DPTP Implementation using P4
TRespT x). Additionally, the switch replies the current traffic-
rate (R) it is receiving from the host. If this rate is close to 0%,
then the host calculates the idle NicW ireDelay as per Equa-
tion 4 (c.f. §3.2), andmaintains its average,AvдNicW ireDelay
over a few seconds of profiling.
NicW ireDelay = (TRespRx −TReqTx) − (TRespT x −TReqRx) (4)

RateMaintenance (R). The incoming traffic-rate from each
host is maintained by the ToR switches. For the traffic-rate
calculation, we leverage the low-pass filter (essentially used
for metering) available in the switch’s data-plane. This outgo-
ing traffic rate can also be maintained in the host’s smart-nic.
However, it is advisable not to calculate the outgoing traffic-
rate by the application at the host since a physical interface
may be virtualized to several applications. Alternatively, this
statistic could be obtained with hypervisor support too.

Phase 2: Synchronization. During this phase, Switch-
to-Host synchronization is performed. The host sends DPTP
query packets, and receives the current time (TNow), and
delays incurred in the switch (TReqRx , TRespT x). Then it cal-
culates the response delay (RespD) as following:

RespD = OWD + (TRespT x −TRespEд) (5)
where, OWD is the one-way NicW ireDelay calculated as:

OWD =


NicW ireDelay

2 ; if R ≈ 0%

AvдN icW ireDelay
2 ; Otherwise

(6)

If the outgoing traffic-rate from the host (R) is close to 0%,
DPTP can use the NicW ireDelay calculated from the current
DPTP query to compute the OWD. However, if R is not close
to 0%, it should use theAvдNicW ireDelay calculated during
the profiling phase. This helps to bound the synchronization
error, because the NicW ireDelay variation is small (27 ns on
X710 and 16 ns on XXV710) when the traffic-rate is close to
0% (§3.2). The host then uses the response delay to calculate
the correct reference time as per Equation 2.
5 IMPLEMENTATION
We have implementedDPTP on a Barefoot Tofino [15] switch
in about 900 lines of P4 code which performs the reference
lookup, calculation and era maintenance using stateful mem-
ories and ALUs in the data-plane. We store the reference

DPTP SOSR ’19, April 3–4, 2019, San Jose, CA, USA

-100

-50

 0

 50

 100

 5 10 15 20 25 30

E
rr

or
 (n

s)

Time (min)

S5-M(1hop)
S1-M(2hop)

S2-S6(3hop)
S1-S3(4hop)

-100

-50

 0

 50

 100

 5 10 15 20 25 30

E
rr

or
 (n

s)

Time (min)

S5-M(1hop)
S1-M(2hop)

S2-S6(3hop)
S1-S3(4hop)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

C
D

F

Absolute Error(ns)

S5-M(1hop)
S1-M(2hop)

S2-S6(3hop)
S1-S3(4hop)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

C
D

F

Absolute Error(ns)

S5-M(1hop)
S1-M(2hop)

S2-S6(3hop)
S1-S3(4hop)

a. Idle Condition b. Heavy Cross-traffic c. Idle Condition CDF d. Heavy Cross-traffic CDF
Figure 11: Error in DPTP Switch-to-Switch synchronization

H1

Reference
Clock Server

S1 S2 S3 S4

H2 H3 H4 H5 H6 H7 H8

S5 S6

M (Master Switch)
Tofino1

Tofino2

Physical
Host1

Physical
Host2

Physical
Host3

Physical
Host4

Figure 12: Evaluation Topology
timestamp in the form of two 32-bit registers. We also imple-
ment a control-plane program in about 500 lines of C code
that runs two threads to perform: (i) Era Maintenance, and
(ii) DPTP request generation. A Follow-up message handler
registers a learning digest callback with the data-plane. Each
time a DPTP request is received, the Follow-up handler gets
a learn digest from the data-plane with the following infor-
mation: 1) host mac-address, 2) DPTP reply out-port. The
handler then probes the port’s register for the transmit times-
tamp (TRespT x), crafts a DPTP follow-up packet containing
TRespT x destined to the host mac-address, and sends to the
data-plane via PCIe. Note that, the programmable switch
allows the transmit timestamp to be recorded for specific
packets. Hence, we record it only for the DPTP packets. We
implement the Follow-up handler in the control-plane since
the accurateTRespT x which is available in a port-side register
is readable only from the control-plane. The overall imple-
mentation of DPTP on the programmable switch is shown
in Figure 10. The DPTP packets are assigned to the highest
priority queue in the switches to minimize queuing delays
(§3.1). The host client is implemented using MoonGen [33].
6 EVALUATION
We perform the evaluation of DPTP using two Barefoot
Tofino switches, and four servers. Each Tofino switch con-
nects to two servers via two network interfaces per server. Us-
ing this physical setup, we form a virtual topology as shown
in Figure 12. Switches S1, S3, S5 and M (Master) are imple-
mented on Tofino2. The links S1-S5, S5-M are implemented
using loopback cables. Similarly, S2, S4, and S6 are imple-
mented on Tofino1 and the link S4-S6 is implemented using a
loopback cable. The links S2-S5, S3-S6 and S6-M are formed
using 100G cables connecting Tofino1 and Tofino2. Note

that the virtualization is done in data-plane using Match-
Action rules similar to [30], Hence, there is no virtualization
overhead. All cables are Direct Attach Copper (DAC) and
configured with 10Gbps link speed. The four physical hosts
are virtualized into 8 virtual hosts, with each virtual host
(H1, H2, ... H8) assigned a NIC interface, which is connected
to either Tofino1 or Tofino2.
The Master-switch (M) is at the core of the network and

is assumed to be synchronized to an external time reference.
Other switches synchronize their time with their parent
switch. For example, S1 queries S5, S3 queries S6 and so
on. Further, S1, S2, S3, and S4 respond to synchronization
requests from H1, H2, ... H8.
The experiments are run for at least 1800 secs and each

switch synchronizes by sending 500 DPTP packets/sec un-
less otherwise mentioned. We limit to 500 packets/sec (every
2ms) due to accuracy reporting at the control-plane for each
synchronization. Each call to accuracy reporting involves cal-
culation of current timestamp from different virtual switches
on the same switch and writing to a file. This process takes
approximately 1.5ms. We later show in our evaluation that
we can scale up to ∼ 2000 DPTP packets/sec/port.

6.1 Switch-to-Switch Synchronization
The virtual switches share a common ground-truth clock
when they belong to the same physical switch. As a result,
synchronization accuracy calculation is possible at the same
time instant in the two virtual switches who belong to the
same physical switch. We plot the synchronization error be-
tween S5-M (1-hop), S1-M (2-hop), S2-S6 (3-hop) and S1-S3
(4-hop) under idle link condition in Figure 11(a) and with
heavy cross-traffic in Figure 11(b). Note that the synchro-
nization still happens over a single hop between adjacent
parent-child switches (§4). Figure 11 only captures the accu-
mulated effect of synchronization error in between switches
which are 1, 2, 3 and 4 hops away.

Idle Condition. We observe that the synchronization
error does not go beyond 6 ns for single-hop (S5-M) and 12 ns
for two-hop (S1-M) under both idle and heavy cross-traffic
condition. In the case of, S2-S6 (3-hop) and S1-S3 (4-hop) we
experience higher synchronization error bounded by about
∼50 ns due to compounded wire-delay asymmetry error with
an increase in hop-count. To understand the distribution of

SOSR ’19, April 3–4, 2019, San Jose, CA, USA Pravein Govindan Kannan, Raj Joshi, Mun Choon Chan

-100

-50

 0

 50

 100

 10 20 30 40 50 60

D
rif

t (
ns

)

Individual Requests

100 pps
250 pps

500 pps

 0

 0.2

 0.4

 0.6

 0.8

 1

-40 -20 0 20 40 60

C
D

F

Drift(ns)

500 pps
250 pps
100 pps

a.Drift (in ns) between
individual DPTP requests b. CDF of Drift

Figure 13: Drift captured at S6 for different DPTP syn-
chronization intervals

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

C
D

F

Absolute Error(ns)

S1-S3
S1-S3 (After Drift Correction)

Figure 14: DPTP w/ and w/o linear drift correction

synchronization error, we plot the CDF of the absolute value
of error in Figure 11(c). We observe the median error to be
about 2 ns and the 99th percentile to be about 6 ns for single
hop (S5-M). For two-hop (S1-M), the median is about 3 ns
and 99thpercentile is about 8 ns. For three-hop (S2-S6) and
four-hop (S1-S3), we observe the median to be about 4 ns and
a long tail with the 99th percentile about 47 ns. This is due to
the effect of drift between the clocks of two different physical
switches (explained later). Note that the synchronization
paths from the master switch till the switches S1, S2, S3 and
S6, include at least one segment where the two synchronizing
virtual switches belong to two different physical switches.

Heavy Cross-traffic. When there is heavy cross-traffic
across the topology, in Figure 11(b) we observe no effect on
the accuracy between S1-M and S5-M when compared to
Figure 11(a). Figure 11(d) shows the CDF of the absolute value
of error under heavy cross-traffic. While S5-M and S1-M
remain unchanged, we observe a higher variation of error in
S2-S6 and S1-S3. The median error is about 8 ns for S2-S6 and
20 ns for S1-S3. Note that the maximum buffer size is 1.5ms.
Changing the buffer size will not affect the accuracy since
we use prioritized queueing for DPTP packets and queuing
delays are accountable. The higher variation could be due
to the effect of non-linearity of the clock during stressed
conditions [5] and higher variation of drift (explained next).

Effect of Drift. To understand the drift behavior between
two physical switches, we measure the drift of the clock at
S6 when it synchronizes with the Master. S6 sends a DPTP
request and uses the TNowM from the response to calcu-
late TRef 1. At the same time, it stores the current TRespIд
as TElapsed1. S6 then sends another DPTP request, and cal-
culates TRef 2 while storing the current TRespIд as TElapsed2.
Now the drift can be calculated asTRef 2 - (TRef 1+(TElapsed2−
TElapsed1)). We verified that this value is almost zero in the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
D

F

Absolute Error(ns)

100G
40G
25G
10G

Figure 15: Error of Clock Synchronization (S1-S3) for
different link-speeds
case of two virtual switches implemented on the same phys-
ical switch because there is no drift between the two. While
our method to measure the drift may not be as accurate as
using an external clock reference, the expected errors due to
unaccounted wire delay asymmetry are very small. Since we
generate the DPTP request packets from the control-plane,
the packet-arrival rate may not be accurate as configured. In
order to make the drift measurement as accurate as possible,
we log the interval (TElapsed2 −TElapsed1) for each drift data-
point and normalize. When S6 is synchronized every second
(1 DPTP pkt/sec), we observe an average drift of about 775 ns
(min:664 ns, max:886 ns). In Figure 13(a), we plot the observed
drift at S6 between individual DPTP request/response with
the Master at different rates of 100/250/500 requests/sec. We
observe that drift between the switches fluctuates and does
not increase linearly. While Figure 13(a) shows a ‘zoomed
in’ picture, the trend in the drift remains the same even over
a longer period (∼30mins). Additionally in Figure 13(b), we
plot the CDF of drift values observed at S6.We observe a high
variance in drift values. The median drift is around 11 ns at
100 pkts/sec, 7 ns at 250 pkts/sec and 3 ns at 500 pkts/sec. The
drift is about 43 ns at 99th percentile with 500 DPTP pkts/sec
and 90th percentile with 250 DPTP pkts/sec. These drift sta-
tistics provide insight in to why the synchronization errors
between S1-S3 and S2-S6 reach ∼50 ns occasionally during
idle and heavy cross-traffic conditions (Figures 11(c), 11(d)).

Linear Extrapolation ofDrift.HUYGENS performs syn-
chronization every 2 seconds and uses linear extrapolation
of past estimates to correct drifts. Based on our measure-
ments of S6’s drift wrt Master (Figure 13), the drift may not
be linear across small time-scales. We tried applying HUY-
GEN’s method of drift correction, by averaging the past drift
estimates (2ms window) to do drift correction at S6 before
responding to requests from S3. Ideally, this should compen-
sate S6’s drift (wrt Master) between its consecutive synchro-
nizations with the Master. This should, in turn, improve the
synchronization between S1-S3 due to less impact of drift on
S3. In Figure 14, we plot the CDF of synchronization error
between switches S1-S3 with and without drift correction
at S6. We observe that there is no improvement and in fact
drift correction reduces the accuracy slightly. This can be
explained by our observation that the clock drift over small
time-scale is not linear. Hence, we do not use any statistical
drift adjustments.

DPTP SOSR ’19, April 3–4, 2019, San Jose, CA, USA

-100

-50

 0

 50

 100

 5 10 15 20 25 30

E
rr

or
 (n

s)

Time (min)

H3-H4
H6-H8

H1-H5

-100

-50

 0

 50

 100

 5 10 15 20 25 30

E
rr

or
 (n

s)

Time (min)

H3-H4
H6-H8

H1-H5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
D

F

Absolute Error(ns)

H3-H4
H6-H8
H1-H5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
D

F

Absolute Error(ns)

H3-H4
H6-H8
H1-H5

a. Idle Condition b. Heavy cross-traffic c. Idle Condition CDF d. Heavy cross-traffic CDF
Figure 16: Error in DPTP Switch-to-Host synchronization

 0
 20
 40
 60
 80

 100
 120
 140

 10 20 30 40 50

D
rif

t (
ns

)

Individual Requests

500 pps
1000 pps

2000 pps

Figure 17: Drift (in ns) at the Host NIC Clock between
individual DPTP requests

Effect of Link-speeds.Weperform switch-to-switch syn-
chronization by changing the link-speeds to 25/40/100G be-
tween all the switches. We plot the CDF of error between
S1-S3 (longest path in the topology) in Figure 15. As shown
in our analysis in §3, we observe a reduction in the error
with higher link-speeds. We observe a similar trend for 40G
and 100G, with 100G marginally better at the 95th percentile.
6.2 Switch-to-Host Synchronization
We sendDPTP requests from hosts to their parent switches at
2000 requests/sec. By using NIC timestamps, we capture the
synchronization error in between H3-H4 (hosts connected to
the same switch), H6-H8 (hosts sharing the same aggregation
switch) and H1-H5 (inter-pod hosts). We plot the synchro-
nization error (smoothened) over a 30-minute run under
idle condition (Figure 16(a)) and when there is a line-rate up-
stream cross-traffic (Figure 16(b)).We also plot the CDF of the
errors in Figure 16(c) and Figure 16(d) for the two conditions.
We observe a median error of 3 ns between H3-H4 under idle
condition and 7 ns under heavy cross-traffic condition. The
error seems to be higher for the hosts connected to different
physical switches due to the drift between the switches as
noted earlier. Between H1-H5, we observe a 75th percentile
error of 20 ns under idle condition. Under heavy cross traffic,
we observe an increase in the error to 31 ns. However, there
is minimal change in the 99th percentile error. We observe
similar trend in the case of H6-H8 which are separated by
four hops. The increase in error from 60th percentile in heavy
cross-traffic conditions can be attributed to the usage of the
profiled valueAvдNicW ireDelay, upon the feedback of high
traffic-rate(R) from the switch.
Drift at NIC. Following similar methodology as in §6.1,

we measure the drift at the host’s NIC clock. This drift gives
an idea of how many requests/sec need to be generated
from the host to keep the synchronization error low. At 1

 0

 20

 40

 60

 80

 100

0 1 2 4 8 16 32 64

C
P

U
(%

)

Number of Ports

Figure 18: CPU util % to handle follow-up packets

DPTP request/sec, we observe that the host NIC drifts at
∼21µs/sec. We also observe that the overall range of the
drift is 20874-21061 ns/sec. To understand the drift behavior
in the NIC, we plot the drift occurred between individual
DPTP requests at different rates in Figure 17. We observe
that at short time-scales the drift in the NIC is also not linear
and has fluctuations. Therefore, to maintain the error in the
order of 10s of ns, it is necessary to perform DPTP requests
more often. While Figure 17 shows a ‘zoomed in’ picture,
the trend in the drift remains the same even over a longer
period (∼30mins).

6.3 Scalability
The scalability and accuracy of DPTP is hugely dependent on
the follow-up delay. Suppose, there are X DPTP request/sec
on a specific port. Therefore, the control-plane has to read
the port Tx register within 1

X sec to getTRespT x . If the control-
plane fails to read the TRespT x within that deadline, the
next response packet would be sent out through the same
port, thus overwriting the value of the previousTRespT x . We
use learning filter from data-plane to deliver digests to the
control-plane. The learning filter is configured to immedi-
ately send the digest notification to the control-plane. We
observe that the follow-up delay6 is about ∼429 µs regardless
of the load of packets on various ports. This means that the
control-plane can keep upwith requests at the rate, (1 second/
429µs) = 2331 requests/sec/port. Considering the maximum
drift reported by [5] of 30µs/sec, 2331 requests/sec/port can
keep the drift of the worst-case clock under 13 ns. Since, the
follow-up delay directly impacts the accuracy (in terms of
drift), it is ideal to prioritize the follow-up packets to avoid
buffer delays. Figure 18 shows the CPU utilization of the
control-plane program with 1000 DPTP requests/sec from

6Digest notification to control-plane + follow-up packet to reach data-plane

SOSR ’19, April 3–4, 2019, San Jose, CA, USA Pravein Govindan Kannan, Raj Joshi, Mun Choon Chan

Table 4: Hardware resource consumption of DPTP
compared to the baseline switch.p4

Resource switch.p4 DPTP Combined
SRAM 29.79% 6.25% 36.04%
Match Crossbar 50.13% 4.62 % 54.75%
TCAM 28.47% 0.0% 28.47%
Stateful ALUs 15.63% 15.63% 31.26%
Hash Bits 32.35% 3.99% 36.34%
VLIW Actions 34.64% 4.43% 39.07%

each port. The baseline CPU utilization is about 10 %. We ob-
serve a steady increase in CPU utilization and it reaches only
upto 40% with incoming requests from 64 ports concurrently.

6.4 Resource Utilization
We evaluate the hardware resource consumption of DPTP
compared to the baseline switch.p4 [34]. The switch.p4 is a
baseline P4 program that implements various common net-
working features applicable to a typical datacenter switch.
We illustrate the percentage of extra hardware resources
consumed by DPTP in Table 4. We observe that while DPTP
consumes a relatively higher proportion of stateful ALUs to
maintain the reference clock and to perform the arithmetic
operations to calculate and adjust the reference. The require-
ment of other resources is less than 7%. Hence, DPTP can fit
easily into datacenter switches on top of switch.p4.

Bandwidth Consumption. A DPTP packet is an Eth-
ernet frame packet with a DPTP header [Type , TNow (hi),
TNow (lo), TReqRx , TRespEд , R] of size [1+4+4+4+4+4] bytes =
21 bytes. Due to minimum Ethernet frame size, this translates
to 64 bytes “on wire” including the Ethernet FCS. 2000 DPTP
requests/sec could keep the clock drift errors low to about 15
ns considering the worst-case clock drift of 30 µs/sec. Hence,
total bandwidth usage for 2000 DPTP requests/sec is about
6000 (req + reply + follow-up packets) * 64 bytes = 3.07 Mbps
per link, which is 8 times lower than the bandwidth usage
(25Mbps for T-1 testbed) of HUYGENS [5].
7 DISCUSSION AND FUTUREWORK
Currently DPTP works the best if the entire network sup-
ports DPTP in the data-plane. In future, we would like to
gauge the behaviour of DPTP under partial deployment of
programmable switches which could increase the synchro-
nization error. Tackling these uncertainties with statistical
extrapolation in the network data-plane can help reduce the
error. It would be interesting to implement sophisticated
extrapolation techniques like Linear/Polynomial/Log Regres-
sion using bit-shifts in data-plane and exponential smoothing
using low pass filters. Such statistical extrapolation could fur-
ther help in reducing the number of DPTP requests thereby
reducing switch CPU and bandwidth consumption. Future
works could also look into more sophisticated ways of esti-
mating NicW ireDelay based on the traffic-rate. Currently,
the timestamps for follow-up packets are obtained from a

port-side register by the control-plane. The reason is be-
cause the port-side register is not integrated with the egress
pipeline and is accessible only from the control-plane. With
hardware enhancements to make the port Tx timestamp ac-
cessible at the egress pipeline, a follow-up packet could be
generated at the data-plane itself and the Tx timestamp could
be embedded in the follow-up packet in the egress pipeline.
We believe this is not the case currently since there was
no application that demanded this. However, DPTP could
hugely benefit from this minor hardware enhancement: Zero
CPU consumption and an order of magnitude reduction in
the follow-up packet latency. In future, we also plan to ex-
pand our measurement study to include other NIC standards,
different cable lengths, and cable medium (optic cables).
We believe that DPTP will encourage researchers to re-

think the implementation of distributed protocols like Net-
Paxos [6], which have strong assumptions likemessage order-
ing in the network. A recent work [35] has shown that design-
ing network-level mechanisms to provide mostly-ordered
multicast could improve the latency of Paxos by 40%. If the
entire network data plane is time-synchronized, it is possible
to observe and capture data-plane events over the network
in an ordered manner [36]. This can facilitate building highly
accurate in-network debugging tools. SpeedLight [14] which
performs network-wide snapshots of switch states to under-
stand network-wide behaviour, uses PTP to synchronize the
switches with a median accuracy of 6.4 µs. By employing syn-
chronization in the data-plane, the snapshot synchronization
could be brought down to a few nanoseconds.

8 CONCLUSION
In this paper, we design and implement DPTP, which to
the best of our knowledge, is the first precise time synchro-
nization protocol for the network data-plane. Through a
measurement study, we quantify the variability in delays at
every stage of data-plane processing. We incorporate these
observations to offset the variable delays in the design and
implementation of DPTP . We evaluate DPTP on a hardware
testbed and observe synchronization error of within ∼50 ns
between switches and hosts separated by up to 6 hops and
under heavy traffic load.

Acknowledgements.We thank the anonymous review-
ers and our shepherd Mina Tahmasbi Arashloo for their
valuable feedback. We also thank Vladimir Gurevich and the
Barefoot support team for their generous help and support.
This work was carried out at the SeSaMe Centre, supported
by Singapore NRF under the IRC@SG Funding Initiative.
It was also partly supported by the Singapore Ministry of
Education tier 1 grant R-252-000-693-114 and National Re-
search Foundation, Prime Minister’s Office, Singapore un-
der its National Cybersecurity R&D Programme (grant no.
NRF2015NCR-NCR002-001).

DPTP SOSR ’19, April 3–4, 2019, San Jose, CA, USA

REFERENCES
[1] D. L. Mills. Internet time synchronization: the network time protocol.

IEEE Transactions on Communications, 39(10):1482–1493, 1991.
[2] IEEE Standard for a Precision Clock Synchronization Protocol for

Networked Measurement and Control Systems. IEEE Std 1588-2008
(Revision of IEEE Std 1588-2002), pages 1–300, 2008.

[3] Ki Suh Lee, Han Wang, Vishal Shrivastav, and Hakim Weatherspoon.
Globally synchronized time via datacenter networks. In Proceedings of
SIGCOMM, 2016.

[4] R. Zarick, M. Hagen, and R. BartoÅą. Transparent clocks vs. enterprise
ethernet switches. In Proceedings of IEEE International Symposium on
Precision Clock Synchronization for Measurement, Control and Commu-
nication, 2011.

[5] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel
Rosenblum, and Amin Vahdat. Exploiting a natural network effect for
scalable, fine-grained clock synchronization. In Proceedings of NSDI,
2018.

[6] Huynh TuDang, Daniele Sciascia, Marco Canini, Fernando Pedone, and
Robert Soulé. NetPaxos: Consensus at Network Speed. In Proceedings
of SOSR, 2015.

[7] Huynh Tu Dang, Marco Canini, Fernando Pedone, and Robert Soulé.
Paxos made switch-y. SIGCOMM CCR, 2016.

[8] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert
Soulé, Changhoon Kim, and Ion Stoica. Netchain: Scale-free sub-rtt
coordination. In Proceedings of NSDI, 2018.

[9] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate
Foster, Changhoon Kim, and Ion Stoica. Netcache: Balancing key-value
stores with fast in-network caching. In Proceedings of SOSP, 2017.

[10] Ming Liu, Liang Luo, Jacob Nelson, Luis Ceze, Arvind Krishnamurthy,
and Kishore Atreya. Incbricks: Toward in-network computation with
an in-network cache. In Proceedings of ASPLOS, 2017.

[11] Jialin Li, Ellis Michael, and Dan R. K. Ports. Eris: Coordination-Free
Consistent Transactions Using In-Network Concurrency Control. In
Proceedings of SOSP, 2017.

[12] Amin Tootoonchian, Aurojit Panda, Aida Nematzadeh, and Scoot
Shenkar. Distributed shared memory for machine learning. In Pro-
ceedings of SysML, 2018.

[13] Thomas Kohler, Ruben Mayer, Frank Dürr, Marius Maaß, Sukanya
Bhowmik, and Kurt Rothermel. P4CEP: Towards In-Network Complex
Event Processing. In Proceedings of NetCompute, 2018.

[14] Nofel Yaseen, John Sonchack, and Vincent Liu. Synchronized network
snapshots. Proceedings of SIGCOMM, 2018.

[15] The world’s fastest and most programmable networks.
https://www.barefootnetworks.com/resources/worlds-fastest-
most-programmable-networks/.

[16] C. D. Murta, P. R. Torres Jr., and P. Mohapatra. Qrpp1-4: Characterizing
quality of time and topology in a time synchronization network. In
Proceedings of Globecom, Nov 2006.

[17] Meinberg PTP Client.
https://www.meinbergglobal.com/english/products/

ptp-client-software-win-linux.htm.
[18] IEEE 1588 PTP and Analytics on Cisco Nexus 3548 Switch.

https://www.cisco.com/c/en/us/products/collateral/switches/nexus-
3000-series-switches/white-paper-c11-731501.html.

[19] FSMLabs Timekeeper Appliance.
https://www.fsmlabs.com/timekeeper/enterprise-appliance/.

[20] James C. Corbett, Jeffrey Dean,Michael Epstein, Andrew Fikes, Christo-
pher Frost, JJ Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher
Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene
Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura,
David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito,
Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Wood-
ford. Spanner: Google’s globally-distributed database. In Proceedings
of OSDI, 2012.

[21] W. Lewandowski, J. Azoubib, and W. J. Klepczynski. Gps: primary tool
for time transfer. Proceedings of the IEEE, 1999.

[22] Cavium. Xpliant ethernet switch product family, 2018.
[23] Barefoot Networks. Tofino, 2018.
[24] Intel. Flexpipe, 2018.
[25] Cisco UADP. https://blogs.cisco.com/enterprise/

new-frontiers-anti-aging-treatment-for-your-network.
[26] Broadcom Trident 3. https://packetpushers.net/broadcom-trident3-

programmable-varied-volume/.
[27] Xilinx SDNet. https://www.xilinx.com/products/design-

tools/software-zone/sdnet.html.
[28] Portable Switch Architecture. https://p4.org/p4-spec/docs/PSA-

v1.0.0.pdf.
[29] In-band Network Telemetry.

https://p4.org/assets/INT-current-spec.pdf.
[30] Pravein Govindan Kannan, Ahmad Soltani, Mun Choon Chan, and

Ee-Chien Chang. BNV: Enabling scalable network experimentation
through bare-metal network virtualization. In Proceedings of USENIX
Workshop on Cyber Security Experimentation and Test (CSET), 2018.

[31] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKe-
own, Martin Izzard, Fernando Mujica, and Mark Horowitz. Forwarding
Metamorphosis: Fast Programmable Match-action Processing in Hard-
ware for SDN. In Proceedings of SIGCOMM, 2013.

[32] Junda Liu, Baohua Yan, Scott Shenker, and Michael Schapira. Data-
driven network connectivity. HotNets-X, 2011.

[33] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohl-
fart, and Georg Carle. MoonGen: A Scriptable High-Speed Packet
Generator. In Proceedings of IMC, 2015.

[34] P4 Language Consortium. 2018. Baseline switch.p4.
https://github.com/p4lang/switch/blob/master/p4src/switch.p4.

[35] Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr. Sharma, and Arvind
Krishnamurthy. Designing Distributed Systems Using Approximate
Synchrony in Data Center Networks. In Proceedings of NSDI, 2015.

[36] T. Mizrahi and Y. Moses. The case for Data Plane Timestamping in
SDN. In Proceedings of IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), 2016.

	Abstract
	1 Introduction
	2 Related Work and Motivation
	3 Measurements
	3.1 Switch-to-Switch Synchronization
	3.2 Switch-to-Host Synchronization

	4 Design
	4.1 DPTP in Operation
	4.2 Switch-to-Switch DPTP
	4.3 Switch-to-Host DPTP

	5 Implementation
	6 Evaluation
	6.1 Switch-to-Switch Synchronization
	6.2 Switch-to-Host Synchronization
	6.3 Scalability
	6.4 Resource Utilization

	7 Discussion and Future Work
	8 Conclusion
	References

